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Abstract

Recent technological advances in the development of flasimeny based devices have consolidated their
leadership position as the preferred storage media in thedded systems market and opened new vistas for
deploymentin enterprise-scale storage systems. Unliksbdisks, flash devices are free from any mechanical
moving parts, have no seek or rotational delays and consues power. However, the internal idiosyncrasies
of flash technology make its performance highly dependemtarkload characteristics. The poor performance
of random writes has been a cause of major concern which ne&égsaddressed to better utilize the potential
of flash in enterprise-scale environments. We examine otleedimportant causes of this poor performance:
the design of the Flash Translation Layer (FTL) which perfsithe virtual-to-physical address translations
and hides the erase-before-write characteristics of fld&hpropose a complete paradigm shift in the design
of the core FTL engine from the existing techniques with oanfand-based Flash Translation Layer (DFTL)
which selectively caches page-level address mappings.éaap and validate a flash simulation framework
called FlashSim. Our experimental evaluation with realishterprise-scale workloads endorses the utility of
DFTL in enterprise-scale storage systems by demonstrafingnproved performance, (ii) reduced garbage
collection overhead and (iii) better overload behavior paned to state-of-the-art FTL schemes. For exam-
ple, a predominantly random-write dominant I/O trace framGLTP application running at a large financial
institution shows a 78% improvement in average response (titue to a 3-fold reduction in operations of the
garbage collector), compared to a state-of-the-art FTeseh Even for the well-known read-dominant TPC-H
benchmark, for which DFTL introduces additional overheadsimprove system response time by 56%.

1 Introduction

Hard disk drives have been the preferred media for datag#draenterprise-scale storage systems for several
decades. The disk storage market totals approximately #8shtannually and is continually on the rise [41].

However, there are several shortcomings inherent to hakd dhat are becoming harder to overcome as we move
into faster and denser design regimes. Hard disks are sigmily faster for sequential accesses than for random

accesses and the gap continues to grow. This can severdiyHamperformance that hard disk based systems



are able to offer to workloads with significant random acaam®mponent or lack of locality. In an enterprise-
scale system, consolidation can result in the multiplexihgnrelated workloads imparting randomness to their
aggregate [8].

Alongside improvements in disk technology, significantatbes have also been made in various forms of
solid-state memory such as NAND flash [1], magnetic RAM (MRABB], phase-change memory (PRAM) [12],
and Ferroelectric RAM (FRAM) [36]. Solid-state memory affeseveral advantages over hard disks: lower and
more predictable access latencies for random requestdlesiioam factors, lower power consumption, lack of
noise, and higher robustness to vibrations and temperaturgarticular, recent improvements in the design
and performance of NAND flash memory (simglgshhenceforth) have resulted in it being employed in many
embedded and consumer devices. Small form-factor har@ tizke already been replaced by flash memory in
some consumer devices like music players, PDAs, digitalktas) etc. More recently flash drives with capacities
of up to 256GB have also become available [1].

Flash devices are significantly cheaper than main memohnt#agies that play a crucial role in improving
the performance of disk-based systems via caching andrimgffd-urthermore, as an optimistic trend, their price-
per-byte is falling [25], which leads us to believe that flaldvices would be an integral component of future
enterprise-scale storage systems. This trend is alredadgrévas major storage vendors have started producing
flash-based large-scale storage systems such as RamS#&oshi0Dexas Memory Systems, Symmetrix DMX-4
from EMC, etc. In fact, International Data Corporation hasreated that over 3 million Solid State Disks (SSD)

will be shipped into enterprise applications, creatingHillion dollars in revenue by 2011 [41].

Using Flash Memory in Enterprise-scale Storage. Before enterprise-scale systems can transition to employ-
ing flash-based devices at a large-scale, certain chalemgest be addressed. It has been reported that man-
ufacturers are seeing return rates of 20-30% on SSD-badefiauks due to failures and lower than expected
performance [6]. While not directly indicative of flash pmrhance in the enterprise, this is a cause for serious
concern. Upon replacing hard disks with flash, certain marsagf enterprise-scale applications are finding re-
sults that point to degraded performance. For examplentigceee et al. [22] observed that “database servers
would potentially suffer serious update performance ddafian if they ran on a computing platform equipped
with flash memory instead of hard disks.” There are at leagtitmportant reasons behind this poor performance
of flash for enterprise-scale workloads. First, unlike nraemory devices (SRAMs and DRAMS), flashrist

alwayssuperior in performance to a disk - in sequential accessslss chight still outperform flash [22]. This



points to the need for employing hybrid storage devices ¢kptoit the complementary performance properties
of these two storage media. While part of our overall godk th out of the scope of this paper. The second
reason, the focus of our current research, has to do witlpehiermance of flash-based devices for workloads
with random writes.Recent research has focused on improving random write npeaftce of flash by adding
DRAM-backed buffers [25] or buffering requests to incretisgir sequentiality [20]. However, we focus on an
intrinsic component of the flash, namely tRtash Translation Layer (FTL)o provide a solution for this poor

performance.

TheFlash Trandation Layer. The FTL is one of the core engines in flash-based SSDs thatairera mapping
table of virtual addresses from upper layers (e.g., thos@rapfrom file systems) to physical addresses on the
flash. It helps to emulate the functionality of a normal bldekice by exposing only read/write operations to the
upper software layers and by hiding the presenceraseoperations, something unique to flash-based systems.
Flash-based systems possess an asymmetry in how they changavrite. While a flash device can read any
of its pages(a unit of read/write), it may only write to one that is in a sja¢ state callecerased Flashes are
designed to allow erases at a much coarser spatial gragullaain pages since page-level erases are extremely
costly. As a typical example, a 16GB flash product from Micf@7] has 2KB pages while the erase blocks are
128KB . This results in an important idiosyncrasy of updateffash. Clearly, in-place updates would require an
erase-per-update, causing performance to degrade. Toogetbthis, FTLs implemerdut-of-place updatesAn
out-of-place update: (i) chooses an already erased papgerifes to it, (iii) invalidates the previous version of
the page in question, and (iv) updates its mapping tableflectehis change. These out-of-place updates bring
about the need for the FTL to employ a garbage collection (€3)hanism. The role of the GC is to reclaim
invalid pages within blocks by erasing the blocks (and ifdezkrelocating any valid pages within them to new
locations). Evidently, FTL crucially affects flash perfance.

One of the main difficulties the FTL faces in ensuring highfgenance is the severely constrained size of
theon-flash SRAM-based cactnere it stores its mapping table. For example, a 16GB flagiteleequires at
least 32MB SRAM to be able to map all its pages. With growirag sif SSDs, this SRAM size is unlikely to
scale proportionally due to the higher price/byte of SRAMisIprohibits FTLs from keeping virtual-to-physical
address mappings for all pages on flash (page-level mapp@g)the other hand, a block-level mapping, can
lead to increased: (i) space wastage (due to internal fratatien) and (ii) performance degradation (due to

GC-induced overheads). To counter these difficultiesesiithe-art FTLs take the middle approach of using a
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Figure 1. The Cumulative Distribution Function (CDF) oftuial address access frequency obtained from (a)
I/O trace from a financial institution [31] and (b) TPC-C bbmark [39] shows existence of significant temporal
locality in 1/0O workloads. For the Financial trace, abou®80f the accesses belong to first 5000 requests in the
LRU stack.

hybrid of page-level and block-level mappings and are primarigeioon the following main idea (we explain the
intricacies of individual FTLs in Section 2): most of the tks (called Data Blocks) are mapped at the block level,
while a small number of blocks called “update” blocks are pwpat the page level and are used for recording

updates to pages in the data blocks.
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Figure 2: A comparison of the performance of a Financialedmmploying an idealized page-level and a state-of-
the-art hybrid FTL scheme.

As we will argue in this paper, various variants of hybrid FfEll to offer good enough performance for
enterprise-scale workloads. As a motivational illustnatiFigure 2 compares the performance of a state-of-the-art
hybrid FTL called FAST with an idealized page-level mappsttpeme with sufficient flash-based SRAM. First,
these hybrid schemes suffer from poor garbage collectidrvaber. Second, they often come with a number
of workload-specific tunable parameters (for optimizingf@enance) that may be hard to set. Finally and most
importantly, they do not properly exploit the temporal liityain accesses that most enterprise-scale workloads are

known to exhibit. Figure 1 shows the extremely high temploredlity exhibited by two well-regarded workloads.
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Even the small SRAM available on flash devices can thus afédgtstore the mappings in use at a given time
while the rest could be stored on the flash device itself. @esit in this paper is that such a page-level FTL,
based purely on exploiting such temporal locality, can eritgm hybrid FTL schemes and also provide a easier-

to-implement solution devoid of complicated tunable pasters.

Research Contributions. This paper makes the following specific contributions:

e We propose and design a novel Flash Translation Layer cBIEEL. Unlike currently predominant hybrid
FTLs, itis purely page-mapped. The idea behind DFTL is sempince most enterprise-scale workloads exhibit
significant temporal locality, DFTL uses the on-flash lirdi@RAM to store the most popular (specifically, most
recently used) mappings while the rest are maintained offethle device itself. The core idea of DFTL is easily
seen as inspired by the intuition behind the Translatiorkasmle Buffer (TLB) [10].

e We implement an accurate flash simulator cakdashSimto evaluate the efficacy of DFTL and compare it
with other FTL schemes. FlashSim is open-source and istiy#inhancing the popular Disksim [7] simulator.
Flashsim simulates the flash memory, controller, caches;eldrivers and various interconnects.

e Using a number of realistic enterprise-scale workloadsdemonstrate the improved performance resulting
from DFTL. As illustrative examples, we observe 78% improeat in average response time for a random
write-dominant 1/O trace from an OLTP application runningadarge financial institution and 56% improve-

ment for the read-dominant TPC-H workload.

The rest of this paper is organized as follows. In Section& pvesent the basics of flash memory technol-
ogy including a classification of various existing FTL sclesm The design of DFTL and its comparison with
hybrid FTL schemes is described in Section 3. Section 4 tescthe framework of our simulator FlashSim.

Experimental results are presented in Section 5. The csiocls of this study are described in Section 6.

2 Background and Related Work

Basicsof Flash Memory Technology. Recently, significant advances have been made in varioossfof solid-
state memory such as NAND flash [34], magnetic RAM (MRAM) [3Bhase-change memory (PRAM), and
FRAM [?]. In particular, improvements in the design and perfornreaatNAND flash memory (simply flash
henceforth) have resulted in it being employed in many eméednd consumer devices. Small form-factor hard

disks have already been replaced by flash memory in some roengievices, like music players. More recently,



flash drives with capacities in the 32-64 GB range have be@miable and have been used in certain laptops as
the secondary storage media [35].

Flash is a unique storage device since unlike the hard disg dnd volatile memories, which provide read and
write opertations, it also provides &nase operatiorj29]. flash provides three basic operations: (i) program or
write, (ii) read, and (iii) erase. Salient operational ewéeristics of these operations are as follows [29]. Theawri
operation changes the value of a bit in a flash memory cell ftam0. The erase operation changes a bit from
0 to 1. Single bit erase operations are not typically suggbrErase operations are performed at the granularity
of ablock (a set of contiguous bits). changing all the bits of the bltck. Erase is the slowest operation while
write is slower than read. The life-time of flash memory isited by the number of erase operations. It has been
reported that each flash memory cell can sustain about 10K-&8ase operations [29]. Moreover, flash memory
can be composed of two types of memory cells: Single-Lewdl{SLC) which stores one bit per cell and Multi-
Level-Cell (MLC), introduced by Intel [13], which stores thple bits of data per memory cell [13]. However,
improving the density of flash memory using MLC has been fdordkteriorate its lifetime and performance [13].
In our research, we focus on SLC based flash memory. Thismebsitween cost, reliability, and performance is
likely to continue in the foreseeable future.

An erase unit, is composed of multipbeages A page is the granularity at which reads and writes are per-
formed. In addition to its data area, a page contains a spatksOut-of-Band area (OOB) which is used for
storing a variety of information including: (i) Error Cooton Code (ECC) information used to check data cor-
rectness, (ii) the logical page number corresponding ta#ta stored in the data area and (iii) page state. Each
page on flash can be in one of three different statesa(iyl, (ii) invalid and (iii) free/erased When no data has
been written to a page, it is in the erased state. A write casiobe only to an erased page, changing its state to
valid. When data is written to an erased page, its state begeoalid. If the page contains an older version of data,
it is said to be in the invalid state. As was pointed out, dytlace updates result in certain written pages whose
entries are no longer valid. They are called invalid pagdasicomes as small blockor large blockdevice.
Using fewer blocks not only improves read, write, and eras#opmance, but also reduces chip size by reducing
gaps between blocks [38]. A small block scheme can have 8KESKB blocks where each page contains 512B
data area and 16B OOB. On the contrary, large block schemes3#KB to 128KB blocks where each page
contains 2KB data area and 64B OOB. Table 1 shows detaileahmafion and performance characteristics for

these two variants of state-of-the-art flash devices [38].



Data Unit Size Access Time
Flash Type Page (Bytes) Block Page READ| Page WRITE]| Block ERASE
Data Area| OOB Area (Bytes) (us) (us) (ms)
Small Block 512 16 (16K+512) 41.75 226.75 2
Large Block 2048 64 (128K+4K) 130.9 405.9 2

Table 1: NAND Flash organization and access time compafismo8mall-Block vs. Large-Block schemes [38].

2.1 Characteristics of Flash Memory Operations

In this subsection, we describe key operational charatiesiof flash memory.

e Asymmetric operation speeds - Flash memory includes the following operational charasties: Basically
the read and write speed of flash memory is asymmetric. Ngtayelerase operations done at the coarser gran-
ularity of a block and are significantly slower that read#&; there is an additional asymmetry between access
times of reads and writes. As shown in Table 1, erase opagatite significantly slower than reads/writes. Ad-
ditionally, write latency can be higher than read latencyupyto a factor of 4-5. This is because draining
electrons from a flash cell for a write takes longer than sgntem for a read. Note that this is significantly
different from hard disk and volatile memory.

e Out-of-place updates - In flash memory, in-place update operations are very coSlgce an erase occurs
at the block granularity whereas writes are done to pages)-place update to a page entails (i) reading all
valid pages of the block into a buffer, (ii) updating the riegd page, (iii) erasing the entire block and (iv) then
writing back all the valid pages to the block. Instead, fasi#-of-place updates are employed that work as
follows: An out-of-place update invalidates the currentsi@n of the page being updated and writes the new
version to a free page. This introduces the need to keep dfdblke current page version location on flash itself,
which is maintained by implementing an address transldtgar (FTL). the FTL. The OOB area of invalid
pages are marked to indicate their changed states.

e Garbage collection - Out-of-place updates result in the creation of invalid page flash. A garbage collector
is employed to reclaim invalid pages and create new erasmikdl It first selects a victim block based on a
policy such as choosing a block with maximum invalid pagdsvaid data within the block is first copied into
an erased block. This data-rewrite operation can be quighty efficiently processed by the special support
of a Copy-Back Progranoperation where an entire page is moved into the interna blaffer first Then the
victim block is erased. The efficiency of garbage collecsane of the dominant factors affecting flash memory

performance.
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Figure 3: A Block Diagram of Flash based Solid State Disk Briv

e Wear-leveling - The lifetime of flash memory is limited by the number of eraperations on its cells. Each
memory cell typically has a lifetime of 10K-1M erase opeavas [5]. Thuswear-levelingtechniques [15, 19,
26] are used to delay the wear-out of the first flash block. Aswilesee, our new mapping scheme will
improve flash performance by improved GC. to make flash metastyonger by evenly distributing the wear-
out over all blocks. Since the MLC has much smaller voltadgerémce than SLC, each write-erase cycle tends
to increase the variance in the voltage stored. Thus, thientieé of MLC is more limited than that of SLC [13].
whereas data density is more in MLC and benefited in cost hydatwo times more than SLC [13]. Also, it
degrades the performance will need to differentiate datemrecisely.

The granularity at which wear-leveling is carried out imigathe variance in the lifetime of individual blocks
and also the performance of flash. The finer the granulathity,smaller the variance in lifetime. However,
it may impose certain performance overheads. Thus, thiketodf needs to be balanced to obtain optimal
performance from the device while providing the minimalicesslifetime. The optimal selection for the victim

block considers the copy overhead of valid pages and the-lrearof the block for wear-leveling.

2.2 Flash Memory based Solid State Disk Drive

A solid state disk-drive (SSD) can be composed of non-velatemory such as battery-backed DRAM (DRAM-
Based SSDs) or flash memory chips (Flash-based SSDs). Tiesdsa hybrid devices incorporating DRAM
and flash memory [37]. RamSan-500, a cached flash SSD frons Tdgaory Systems (TMS) is a hybrid of
DDR RAM and NAND-SLC Flash Memory [32]. Symmetrix DMX-4 froEBMC [37] is an enterprise networked

storage system employing the flash drives. Since NAND flasmong based SSD has recently become popular,
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Figure 4: (a)-(b) Page-level and Block-level FTL scheme®NL Logical Page Number, PPN: Physical Page
Number, LBN: Logical Block Number, PBN: Physical Block Nueth

in this work we only concentrate on NAND flash memory based SSD

Figure 3 describes the organization of internal componiengsFlash-Based SSD [28]. It possesses a host
interface such as Fiber-Channel, SATA, PATA, and SCSI etappear as block I/O device to the host computer.
The main controller is composed of two units - processing (gnich as ARM7 processor) and fast access memory
(such as SRAM). The virtual-to-physical mappings are pgeed by the processor and the data-structures related
to the mapping table are stored in SRAM in the main controllgre software module related to this mapping
process is called Flash Translation Layer (FTL). A part oASRs also used for caching data.

A storage pool in a SSD is composed of multiple flash menkRignes The Planesare implemented in
multiple Dies For example, Samsung 4GB flash memory hasbias A Die is composed of four planes, each
of size is 512MB [30]. APlaneconsists of a set of blocks. The block size can be 64KB, 128KBKB etc.
depending on the memory manufacturer. The SSD can be imptethenultiplePlanes SSD performance can be
enhanced by interleaving requests across the planes [B@hws achieved by the multiplexer and de-multiplexer
between SRAM buffer and flash memories. In our research, wkevdiéh a simplistic, SLC flash device model

with block size as 128KB.

Details of Flash Tranglation Layer. The mapping tables and other data structures, manipulgtdted-TL are
stored in a small, fast SRAM. The FTL algorithms are executedt. FTL helps in emulating flash as a normal
block device by performing out-of-place updates which imthelps to hide the erase operations in flash. It
can be implemented at different address translation gaatigk. At two extremes are page-level and block-level
translation schemes which we discuss next. As has beed stEéebegin by understanding two extremes of FTL
designs with regard to what they store in their in-SRAM maggable. Although neither is used in practice, these

will help us understand the implications of various FTL desthoices on performance.



Page-level and Block-level FTL Schemes. As shown in Figure 4(a), In a page-level FTL scheme, the &gic
page number of the request sent to the device from the uppensliauch as file system can be mapped into any
page within the flash. This should remind the reader of a fadigociative cache [10]. Thus, it provides compact
and efficient utilization of blocks within the flash deviceowkver, on the downside, such translation requires a
large mapping table to be stored in SRAM. For example, a 16&déhfinemory requires approximately 32MB of
SRAM space for storing a page-level mapping table. Giverotder of magnitude difference in the price/byte of
SRAM and flash; having large SRAMSs which scale with increg$lash size is infeasible.

At the other extreme, in a block-level FTL scheme, as degiateFigure 4(b), page offset within a block
is fixed. the logical block number is translated into a phgisidock number using the mapping table similar to
set-associative cache design [10]. The logical page nunftsat within the block is fixed. Figure 4-(b) shows an
example of block-based address translation. The Logiogé Rumber (LPN) is converted into a Logical Block
Number(LBN) and offset. The LBN is then converted to PhylsRlack Number (PBN) using the block based
mapping table. Thus, the offset within the block is invarimraddress translation. The size of the mapping table is
reduced by a factor dflock size/page siZ&28KB/2KB=64) as compared to page-level FTL. Howevenraduies
less flexibility as compared to the page-based scheme. Howauen if there are free pages within a block except
at the required offset, this scheme may require allocaticemother free block; thus reducing the efficiency of
block utilization. However, since a given logical page mayvrbe placed in only a particular physical page
within each block, the possibility of finding such a page dases. As a result the garbage collection overheads
grow. Moreover, the specification for large block based ftishces requiring sequential programming within the
block [38] making this scheme infeasible to implement intsdevices. For example, Replacement Block-scheme
[3] is a block-based FTL scheme in which each data block ecated replacement blocks to store the updates.
The chain of replacement blocks along with the original ddtek are later merged during garbage collection.

Figure 4 illustrates the differences in address transidtietween these two schemes.

A Generic Description of Hybrid FTL Scheme. To address the shortcomings of the above two extreme map-
ping schemes, researchers have come up with a variety afaitees. Log-buffer based FTL scheme is a hybrid
FTL which combines a block-based FTL with a page-based FTdhawn in Figure 5.

The entire flash memory is partitioned into two types of bieRata andLog/Updateblocks. First write to a
logical address is done in data blocks. Although many schdrage been proposed [14, 4, 23, 16, 24], they share

one fundamental design principle. All of these schemes hydad between page-level and block-level schemes.
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Figure 5: Hybrid FTL Scheme, combining a block-based FTLdata blocks with a page-based FTL for log
blocks. LPN: Logical Page Number, PPN: Physical Page Nunti: Logical Block Number, PBN: Physical
Block Number.

They logically partition their blocks into two group®ata BlocksandLog/Update BlocksData blocks form the
majority and are mapped using the block-level mapping sehelnsecond special type of blocks are called log
blocks whose pages are mapped using a page-level mapplag Bigure?? illustrates such hybrid FTLs. Any
update on the data blocks are performed by writes to the lmgkbl The log-buffer region is generally kept small
in size (for example, 3% of total flash size [24]) to accomntedhe page-based mappings in the small SRAM.

Extensive research has been done in optimizing log-butisetd FTL schemes [14, 4, 23, 16, 24].

Garbage Coallection in Hybrid FTLs. The hybrid FTLs invoke a garbage collector whenever nolfsgdlocks
are available. Garbage Collection requires merging logkdavith data blocks. The merge operations can be

classified into:Switch merggPartial merge andFull merge

Data Block A Log Block A Data Block A Log Block B Data Block A Erased Block C Log Block B
Data OOB Data OOB Data OOB Data OOB Data OOB Data OOB_ Data OOB
[T _LPN=0,1 ] [T LPN=O,V [T LPN=0,1 [T LPN=0,V ] [ LPN=O.1 | LPN=2, P [ LPN=9,1
[ LPN=1,1 ] I LPN=LV [T PN=A.1 [ PN=A,V ] Livialy | [ [ LPN=0,F ] [ LPN=71. ]
T LPN=2.1 ] CLLPN=2V CIPN=2V I PN=o.F] (MN_LPN=.1 | LENCe L [T LPN=0,V ]
I CPN=3.T ] CIiPN=Sv LNV ] PN F] LPN=3, V [PN=c.F [PN=2,V

e —

(a) Switch Merge (b) Partial Merge (c) Full Merge

Figure 6: VariousMerge operations $witch Partial, andFull) in log-buffer based FTL schemes. V: Valid, I:
Invalid, and F: Free/Erased and LPN is Logical Page Number.

In Figure 6(a), since log block B contains all valid, sequadhyt written pages corresponding to data block A,
a simpleSwitch Mergeas performed, whereby log block B becomes new data block baeakd data block A is

erased. Figure 6(b) illustratéartial Mergebetween block A and B where only the valid pages in data block A
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are copied to log block B and the original data block A is edag®nging the block B’s status to a data bloekll
Mergeinvolves the largest overhead among the three types of meAgshown in Figure 6(c), Log block B is
selected as the victim block by the garbage collector. Thid pages from the log block B and its corresponding
data block A are then copied into a new erased block C and foamkd B are erased. However, full merge can
become a long recursive operation in case of a fully-asteeibbg block scheme where the victim log block has
pages corresponding to multiple data blocks and each oé ttiat blocks have updated pages in multiple log
blocks.

Log Block L1
Data Block D1 (Victim) Log Block L2 Log Block L4

Data OOB Data OOB Data OOB Data OOB
[ LPN=0T LPN=0,V [ [LPN=91,V [ [LPN=82,V
[T CPN=1.T 1) [ [ LPN=5.V [ LPN=1.V [ T LPN=2.V
[T CPN=2.1 [T LiPN=D.V C_[LPN=20.V] | "/ [ TLPN=30,V]
LPN=3, V [ [ LPN=12,1 [ T LPN=4V LPN=45, V

(©)

Data Block D2 @

Data 00B | Free/Erased Block
PRt L Data OOB
%;u:w:s T b aa_ ——

LPN=6, |
LPN=7.V

Figure 7: Expensive Full Merge.

This situation is illustrated in Figure 7. log block L1 coiniag randomly written data is selected as a victim
block for garbage collection. It contains valid pages bgiong to data blocks D1, D2 and D3. An erased block is
selected from the free block pool and the valid pages betgntg D1 are copied to it from different log blocks
and D1 itself in the order shown. The data block D1 is thenesta§imilar operations are carried out for data
blocks D2 & D3 since L1 contains the latest version of somdneffiages for these blocks. Finally, log block L1
is erasedThus, random writes in hybrid FTLs induce costly garbagédectibn which in turn affects performance
of subsequent operations irrespective of whether they egeential or random.Recent log buffer-based FTL
schemes [16, 24] have tried to reduce the number of thesem&irtje operations by segregating log blocks based
on access patterns. Hot blocks with frequently accessead gtaterally contain large number of invalid pages
whereas cold blocks have least accessed data. Utilizinglboks for garbage collection reduces the valid page

copying overhead, thus lowering the full merge cost.

State-of-the-art FTLs. State-of-the-art FTLs [4, 23, 16, 24] are based on hybriddofier based approaches.
They try to address the problems of expensive full mergesctware inherent to any log-buffer based hybrid

scheme, in their own unique way. However, all of these atterape unable to provide the desired results.
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e Block Associative Sector Translation (BAST) [4] schemelesively associates a log block with a data block.
In presence of small random writes, this scheme suffers fogniblock thrashind23] that results in increased
full merge cost due to inefficiently utilized log blocks.

e Fully Associative Sector Translation (FAST) [23] allowglblocks to be shared by all data blocks. This im-
proves the utilization of log blocks as compared to BAST. FA®eps a single sequential log block dedicated
for sequential updates while other log blocks are used fdopaing random writes. Thus, it cannot accom-
modate multiple sequential streams. Further, it does mmtige any special mechanism to handle temporal
locality in random streams.

e SuperBlock FTL [16] scheme utilizes existencebtiick levelspatial locality in workloads by combining con-
secutive logical blocks into a superblock. It maintainsgéeyel mappings within the superblock to exploit
temporal locality in the request streams by separating hdtcald data within the superblock. However, the
three-level address translation mechanism employed bygtfieme causes multiple OOB area reads and writes
for servicing the requests. More importantly, it utilize$ided superblock size which needs to be explicitly
tuned to adapt to changing workload requirements.

e The recent Locality-Aware Sector Translation (LAST) scled@v] tries to alleviate the shortcomings of FAST
by providing multiple sequential log blocks to exploit Sphtocality in workloads. It further separates random
log blocks into hot and cold regions to reduce full merge .ctstorder to provide this dynamic separation,
LAST depends on an external locality detection mechanismwe¥er, Lee et al. [24] themselves realize that
the proposed locality detector cannot efficiently idensgquential writes when the small-sized write has a
sequential locality. Moreover, maintaining sequentigl ldocks using a block-based mapping table requires
the sequential streams to be aligned with the starting ptiget @f the log block in order to perform switch-
merge. Dynamically changing request streams may imposgeegstrictions on the utility of this scheme to

efficiently adapt to the workload patterns.

3 Design of DFTL: Our Demand-based Page-mapped FTL

We have seen that any hybrid scheme, however well-designteched, will suffer performance degradation due
to expensive full merges that are caused by the differenogaipping granularity of data and update blocksir
contention is that a high-performance FTL should compjeted re-designed by doing away with log-blocks.

Demand-based Page-mapped FTL (DFTL) is an enhanced forhe gfage-level FTL scheme described in Sec-
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tion 2. It does away completely with the notion of log blocks.fact, all blocks in this scheme, can be used for
servicing update requests. Page-level mappings allowestguo be serviced from any physical page on flash.
However, to make the fine-grained mapping scheme feasiltetivé constrained SRAM size,special address
translation mechanisrhas to be developed. In the next sub-sections, we descela thitecture and functioning

of DFTL and highlight its advantages over existing statéhefart FTL schemes.

3.1 DFTL Architecture

DFTL makes use of the presence of temporal locality in wa#oto judiciously utilize the small on-flash SRAM.
Instead of the traditional approach of storing all the adglteanslation entries in the SRAM, it dynamically loads
and unloads the page-level mappings depending on the veatldocess patterns. Furthermore, it maintains the
complete image of the page-based mapping table on the flagtedeself. There are two options for storing the
image: (i) The OOB area or (ii) the data area of the physicgkepa We choose to store the mappings in the
data area instead of OOB area because it enables us to gratgeahumber of mappings into a single page as
compared to storing in the OOB area. For example, if 4 Bytesiaeded to represent the physical page address in
flash, then we can group 512 logically consecutive mappimgse data area of a single page whereas only 16 such
mappings would fit an OOB area. Moreover, the additional sgaerhead incurred is negligible as compared to
the total flash size. A 1GB flash device requires only about Z&fibroximately 0.2% of 1GB) space for storing

all the mappings.
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Data Pages and Trandation Pages. In order to store the address translation mappings on flashadea, we
segregatedata-Pagesand Translation-Pages Data pages contain the real data which is accessed or dpdate
during read/write operations whereas pages which onlg stdormation about logical-to-physical address map-
pings are called as translation pages. Blocks containemgskation pages are referred toTaanslation-Blocks
andData-Blocksstore only data pages. As is clear from Figure 8, transldilooks are totally different from log
blocks and are only used to store the address mappings. €haire only about 0.2% of the entire flash space

and do not require any merges with data blocks.

3.2 Logical to Physical Address Trandation

A request is serviced by reading from or writing to pages i dlata blocks while the corresponding mapping
updates are performed in translation blocks. We describeusdata structures and mechanisms required for

performing address translation and discuss their impatt®woverall performance of DFTL.

Global Mapping Table and Global Trandation Directory. The entire logical-to-physical address translation
set is always maintained on some logically fixed portion adtfland is referred to as tli&obal Mapping Table
However, only a small number of these mappings can be prase&SRAM. These active mappings present in
SRAM form theCached Mapping Table (CMT¥pince out-of-place updates are performed on flash, tri@osla
pages get physically scattered over the entire flash mendFy.L keeps track of all these translation pages on
flash by using @lobal Translation Directory (GTD)Although GTD is permanently maintained in the SRAM,
it does not pose any significant space overhead. For exafopla, LGB flash memory device, 1024 translation

pages are needed (each capable of storing 512 mappingsyimgg GTD of about 4KB.

DFTL Address Trandation Process. Algorithm 1 describes the process of address translatioedivicing a
request. If the required mapping information for the givead/write request exists in SRAM (in CMT), it is
serviced directly by reading/writing the data page on flaghgithis mapping information. If the information is
not present in SRAM then it needs to be fetched into the CMnfflash. However, depending on the state of
CMT and the replacement algorithm being used, it may entaitiag entries from SRAM. We use the segmented
LRU array cache algorithm [18] for replacement in our impésration. However, other algorithms such as
evicting Least Frequently Used mappings can also be used.

If the victim chosen by the replacement algorithm has nonhgedated since the time it was loaded into
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SRAM, then the mapping is simply erased without requiring extra operations. This reduces traffic to trans-
lation pages by a significant amount in read-dominant waidbo In our experiments, approximately 97% of
the evictions in read-dominant TPC-H benchmark did notrireny eviction overheads. Otherwise, the Global
Translation Directory is consulted to locate the victintgsresponding translation page on flash. The page is then
read, updated, and re-written to a new physical locatiore ddrresponding GTD entry is updated to reflect the
change. Now the incoming request’s translation entry iatled using the same procedure, read into the CMT and
the requested operation is performed. The example in F@guhestrates the process of address translation when

a request incurs a CMT miss.

Input: Request's Logical Page Numbetequest;,,), Request’s Sizerequests;.c)
Output: NULL
while requests;,. 7 0do
if request;y,, miss in Cached Mapping Tabtaen
if Cached Mapping Table is fulhen
/* Select entry for eviction using segmented LRU replacenaggorithm */
victimyy, < select_victim_entry()

if UiCtimla:st_'nwd_tinLe 75 vi_CtimLO(Ld_ti77L€ then
[*victimyype : Translation or Data Block

Translation_Pageqictim : Physical Translation-Page Number containing victimyehtr
Translation_Pageyictim +— consult_GTD (victimy,y,)
victimgype < Translation Block
DFTL_ Service_Request(victim)
end
erase_entry(victimypy,)
end
Translation_Pagerequest < consult_GTD(request;y,)
/* Load map entry of the request from flash into Cached Mappmgle */
load_entry(Translation_-Pagerequest)
end
requestiype < Data Block
requestppn — CMT_lookup(request;yy,)
DFTL_Service_Request(request)
requestsize- -
end

Algorithm 1: DFTL Address Translation

Overhead in DFTL Address Trandlation. The worst-case overhead includes two translation pages i@se

for the victim chosen by the replacement algorithm and therdr the original request) and one translation page
write (for the victim) when a CMT miss occurs. However, ouside choice is rooted deeply in the existence
of temporal locality in workloads which helps in reducing thumber of evictions. Furthermore, the presence
of multiple mappings in a single translation page alldvedch updatedor the entries in the CMT, physically
co-located with the victim entry. We later show through dethexperiments that the extra overhead involved

with address translation is much less as compared to théditsemecrued by using a fine-grained FTL.
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1 is selected, its corresponding translation pafiery 21 is located using Global Translation Directory (GTD),
(3)-(4) Mppyn 21 is read, updatedippy 130— Dppy 260) and written to a free translation padé£p 23),
(5)-(6) GTD is updatedNlppy 21 — Mppy 23) andDypy 1 entry is erased from CMT. (7)-(11) The original
request’s Drpn 1280) translation page is located on fladlifpry 15). The mapping entry is loaded into CMT
and the request is serviced. Note that each GTD entry mapk§it2lly consecutive mappings.

3.3 Read/Write Operation and Garbage Collection

Read requests are directly serviced through flash page pEadtmns once the address translation is completed.
DFTL maintains two blocks, namelgurrent Data Blockand Current Translation Blockwhere the data pages
and translation pages are written, respectively. Pagedbasppings allow sequential writes within these blocks,
thus conforming to the large-block sequential write speaifon [38]. For write requests, DFTL allocates the next
available free page in the Current Data Block, writes to @t #Hren updates the map entry in the CMT.

However, as writes/updates propagate through the flasih,aoperiod of time the available physical blocks
(in erased state) decreases. DFTL maintains a high waterwalied GC,,-csho1d, Which represents the limit till
which writes are allowed to be performed without incurrimy @verhead of garbage collection for recycling the
invalidated pages. Ond&C,;,,.shoid IS Crossed, DFTL invokes the garbage collector. Victim kéoare selected
based on a simple cost-benefit analysis that we adapt from [19

Different steps are followed depending on whether the midé a translation block or a data block before
returning it to the free block pool after erasing it. If it igranslation block, then we copy the valid pages to the
Current Translation Block and update the GTD. However, éfifctim is a data block, we copy the valid pages
to the Current Data Block and update all the translation pagel CMT entries associated with these pages. In
order to reduce the operational overhead, we utilize a coatioin oflazy copyingandbatch updatesinstead of
updating the translation pages on flash, we only update th& foMhose data pages whose mappings are present

in it. This technique ofazy copyinghelps in delaying the proliferation of updates to flash kit torresponding
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Figure 11:Example: (1) Data Block Qppyx B3) is selected as Victim for Garbage Collection. (2) Valapps
Dppn 110 & Dppy 111 are copied to th€urrent Data BlockK Dppy B4) at free page®ppy 202 & Dppn
203. (3) Translation pag&/ppx 12 containing the mappings for the valid pagespy 110 & Dppy 111 is
updated and copied to the Current Map Blogk{zy B2). (4) Global Translation Directory entry corresponding
to My py Ois updated M ppy 12 — Mppy 32). (5) SinceDrpy 0 is present in Cached Mapping Table, the
entry is also updated{ppny 110— Dppy 202). Note: We do not illustrate the advantages of batchtegdand
lazy copying in this example.

mappings are evicted from SRAM. Moreover, multiple validadpages in the victim may have their virtual-to-
physical address translations present in the same trammsjgige. By combining all these modifications into a
single batch update we reduce a number of redundant updates. The associatédl@l@anslation Directory
entries are also updated to reflect the changes. The exampigure 11 displays the working of our Garbage
Collector when th&ZCyy,,«sh01q iS reached and a data block is selected as victim. Owing toespanstraints, we

do not present algorithms for garbage collection and olverad/write operations.
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Input: NULL
Output: NULL
victim «— select_victim_entry();
/* Victim is TRANSLATION BLOCK */
if victimiype € TRANSLATIOMBLOCK SETthen
foreach victim,,ge(;) dO
/* (i) Copy only valid pages in the victim block to the Curréhanslation Block, (ii) invalidate
old pages, and updat@lobal Translation Directory/
if victimpage(s) iS valid then
curr_translation_blk — get_curr_translation_blk();
copy -page(victimpgge(s), curr-map.blk);
update_GTD (victim
end

page(i) )'

end
end
ese
I* Victim is DATA BLOCK */ foreach victim,qge(i)
/* Copy only valid pages in the victim bloci to the
current data block, invalidate old pages, and mark
their corresponding translation pages for update */
if victimpage(s) iS valid then
curr_data_blk — get_curr_data_blk();
copy -page(victimygge(s), curr-data_blk);
translation_page_update_set[] «— mark_corr_translation_page_for_update (victim
end

page(i) )'

end
[* perform batch update on the mark&chnslation Page%/
foreach translation_page; € translation_page_update_set do
curr_translation_blk — get_curr_translation_blk();
old_translation_page < translation_page;;
update_translation_page(translation_page;, curr_translation_blk);
invalidate(old_translation_page);
update_GTD (translation_page;);
if translation_page; € CachedM appingTable then
update_ CMT (translation_page;);
end
end
end
erase_blk(victim); /* erase the victim block */

Algorithm 2: Garbage Collection

3.4 Dealing with Power Failure

Although flash is a non-volatile storage device, it relies/olatile on-flash SRAM which is susceptible to power
failure in the host. When power failure occurs, all logipalysical mapping information stored in the Cached
Mapping Table on SRAM will be lost. The traditional approamhreconstructing the mapping table utilizes
scanning the logical addresses stored in the OOB area diydigal pages on flash [23]. However, the scanning
process incurs high overhead and leads to long latencide tiei mapping table is being recovered. In DFTL,
the Global Translation Directory stores the locationabiniation corresponding to the Global Mapping Table.
Thus, storing the GTD on non-volatile storage resilientawer failure such as a fixed physical address location
on flash device itself helps to bootstrap recovery. This eapdsformed periodically or depending on the required
consistency model. Moreover, since GTD size is very sm#&lB(for 1GB flash), the overhead involved in terms

of both space as well as extra operations is also very smallveier, at the time of power failure there may be
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some mappings present in the Cached Mapping Table, thatbeare updated but not yet written back to map
pages on flash. If strong consistency is required then ewveiCdthed Mapping Table needs to be saved along

with the GTD.

3.5 Comparison of Existing State-of-the-art FTLswith DFTL

BnggiaFcTeE‘[eS?t BAST [4] FAST [23] SuperBlock [16] LAST [24] DETL P;sgaF'TL
FTL type Block Hybrid Hybrid Hybrid Hybrid Page Page
Mapping DB-Block DB-Block SB - Block DB/Sequential LB
Granularity Block LB - Page LB-Page LB/Blocks within - Block Page Page
SB-Page Random LB - Page
Division 1 Sequential (m) Sequential-
of Update - - +(M-1) - (M-m) Random
Blocks (M) Random (Hot and Cold)
Associativity Random LB-(N:M-1) Random LB-(N:M-m)
of Blocks (1:K) (2:M) Sequential LB-1:1 (S:M) Sequential LB-(1:1) (N:N) (N:N)
(Data:Update)

Blocks available || Replacement Log Log Log Log All Data All
for updates Blocks Blocks Blocks Blocks Blocks Blocks Blocks
Full Mgrge Yes Yes Yes Yes Yes No No
Operations

Table 2: FTL Schemes Classification. N: Number of Data Blpdks Number of Log Blocks, S: Number of
Blocks in a Super Block, K: Number of Replacement Blocks. DBta Block, LB: Log Block, SB: Super Block.
In FAST and LAST FTLs, random log blocks can be associateld mitltiple data blocks.

Table 2 shows some of the salient features of different FHlesws. The DFTL architecture provides some

intrinsic advantages over existing state-of-the-art Fiwhgch are as follows:

e Full Merge - Existing hybrid FTL schemes try to reduce the number of fullrge operations to improve
their performance. DFTL, on the other hand, completely dgoesy with full merges. This is made possible
by page-level mappings which enable relocation of any Egiage to any physical page on flash while other
hybrid FTLs have to merge page-mapped log blocks with bloelpped data blocks.

e Partial Merge - DFTL utilizes page-level temporal locality to store pagdsch are accessed together within
same physical blocks. This implicitly separates hot and ddbcks as compared to LAST and Superblock
schemes [16, 24] require special external mechanisms ievacthe segregation. Thus, DFTL adapts more
efficiently to changing workload environment as comparetth exkisting hybrid FTL schemes.

e Random Write Performance - As is clearly evident, it is not necessarily the random gritehich cause
poor flash device performance but the intrinsic shortcominghe design of hybrid FTLs which cause costly
merges (full and partial) on log blocks during garbage atibe. Since DFTL does not require these expensive

full-merges, it it is able to improve random write perforroarof flash devices.
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e Block Utilization - In hybrid FTLs, only log blocks are available for servicingdate requests. This can lead
to low block utilization for workloads whose working-setaiis smaller than the flash size. Many data blocks
will remain un-utilized (hybrid FTLs have block-based migs for data blocks) and unnecessary garbage
collection will be performed. DFTL solves this problem ®ngpdates can be performed on any of the data

blocks.

4 TheFlashSim Simulator

In order to study the performance implications of various. E€hemes, we develop a simulation framework for
flash based storage systems called FlashSim. FlashSimltidyp@nhancing Disksim [7], a well-regarded disk
drive simulator. Disksim is an event-driven simulator whitas been extensively used in different studies [9, 21]
and validated with several disk models. It simulates s®gtem components including disk drives, controllers,
caches, and various interconnects etc. However, it doealloot the modeling of flash based devices.

FlashSim is designed with a modular architecture with thgabdity to model a holistic flash-based storage
environment. It is able to simulate different storage syftean components including device drivers, controllers,
caches, flash devices, and various interconnects. In oegratied simulator, we add the basic infrastructure
required for implementing the internal operations (pagely@age write, block erase etc.) of a flash-based device.
The core FTL engine is implemented to provide virtual-tggibal address translations along with a garbage
collection mechanism. Furthermore, we implement a muléitaf FTL schemes: (i) a block-based FTL scheme
(replacement-block FTL [3]), (ii) a state-of-the-art hgbFTL (FAST [23]) , (iii)) our page-based DFTL scheme
and (iv) an idealized page-based FTL. This setup is usedutly ghe impact of various FTLs on flash device
performance and more importantly on the components in thengiorage hierarchy. FlashSim has been validated
against a 32GB 2.5” SATA Solid State Drive from Super-Tal@it Currently, the simulator has been designed
and validated for SLC-based flash devices. The experimsatap is designed with a single plane SLC-based
flash memory. However, as part of future study, the existiratpitecture would be extended to simulate MLC-

based flash devices. However, owing to space constraintdpwet present our validation methodology.

'Reviewers interested in FlashSim’s source code may apiprasithrough the conference chairs. We plan to make it fraglifable
when the constraints of double-blind reviewing do not apply
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5 Experimental Results

We use FlashSim to evaluate the performance of DFTL and camiipaith both (i) a state-of-the-art hybrid FTL
FAST [23]) and an (ii) idealized page-based FTL with suffiti8RAM (calledBaselineFTL henceforth).

5.1 Evaluation Setup

We simulate a 32GB NAND flash memory with specifications showfable 1. To conduct a fair comparison of
different FTL schemes, we consider only a portion of flashhasttive regionwhich stores our test workloads.
The remaining flash is assumed to contain cold data or frexk®Mhich are not under consideration. We assume
the SRAM to be just sufficient to hold the address translation FAST FTL. Since the actual SRAM size is not
disclosed by device manufacturers, our estimate represeatminimum SRAM required for the functioning of
a typical hybrid FTL. We allocate extra space (approxinyaBo of the total active region [16]) for use as log-
buffers by the hybrid FTL. We exploit intra-request 1/O gkalism by adopting atriping techniqugl17] (striping

level 4) that splits the requests across multiple chanoébe thandled simultaneously.

Workloads Average(lze;)quest&zeRead (%)| Sequentiality (%) Average_I;?nqeuza;tsl)nter—amvcil
Financial (OLTP) [31] 4.38 9.0 2.0 133.50
Cello99 [11] 5.03 35.0 1.0 41.01
TPC-H (OLAP) [42] 12.82 95.0 18.0 155.56
Web Search [40] 14.86 99.0 14.0 9.97

Table 3: Enterprise-Scale Workload Characteristics.

Workloads. We use a mixture of real-world and synthetic traces to stidyiinpact of different FTLs on a
wide spectrum of enterprise-scale workloads. Table 3 ptesmalient features of our workloads. We employ a
write-dominant 1/O trace from an OLTP application runnirtgadinancial institution [31] made available by the
Storage Performance Council (SPC), henceforth referreak ttheFinancial trace We also experiment using
Cello99 [11], which is a disk access trace collected fromnmaetsharing server exhibiting significant writes;
this server was running the HP-UX operating system at H&Matkard Laboratories. We consider two read-
dominant workloads to help us assess the performance degnadf any, suffered by DFTL in comparison with
other state-of-the-art FTL schemes due to its addresdatamsoverhead. For this purpose, we use TPC-H [42],
which is an ad-hoc, decision-support benchmark (OLAP vea#t) examining large volumes of data to execute

complex database queries. Also, we use a read-dominant BéolBengine trace [40] made available by SPC.
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Figure 12: Overheads with different FTL schemes. We comp&€L with FAST and Baseline for three work-
loads: Financial, Cello99, and TPC-H. The overheads forhilghly read-oriented Web Search workload are
significantly smaller than others and we do not show them.hérgc), Address Translation (Read) and Ad-
dress Translation (Write) denote the extra read and wriezatipns for address translations required in DFTL,
respectively. All extra read/write operations have beemadized with respect to FAST FTL scheme.

Finally, we also use a number of synthetic traces to studpéhavior of different FTL schemes for a wider range

of workload characteristics than those exhibited by thevalveal-world traces.

Performance metrics. The device service times a good metric for estimating FTL performance since it cap-
tures the overheads due to both garbage collection and ssdthenslation. However, it does not include the
qgueuing delaydor requests pending in I/O driver queues. In this study, wze both (i) indicators of the
garbage collector’s efficacy and (ii) response time as se#red/O driver (this is the sum of the device service
time and time spent waiting in the driver’s queue, we willl gathe system response tilm& characterize the

behavior/performance of the FTLs.

5.2 Analysisof Garbage Collection and Address Translation Over heads

The garbage collector may have to perform merge operatibmarmus kinds (switch, partial, and full) while

servicing update requests. Recall that merge operaticses @aerheads in the form of block erases. Additionally,
merge operations might induce copying of valid pages fraetimi blocks—a second kind of overhead. We report
both these overheads as well as the different kinds of mergeabons in Figure 12 for our workloads. As expected
from Section 3 and corroborated by the experiments showigur& 12, read-dominant workloads (TPC-H and
Web Search)—with their small percentage of write requestgribit much smaller garbage collection overheads
than Cello99 or Financial trace. The number of merge omeratand block erases are so small for the highly

read-dominant Web Search trace that we do not show thesgundsi 12(a),(b), and (c).
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Switch merges. Hybrid FTLs can perform switch merges only when the victindage block (selected by
garbage collector) contains valid data belonging to Idhiconsecutive pages. DFTL, on the other hand, with
its page-based address translation, does not have anyestdation. HenceDFTL shows a higher number of

switch merges$or even random-write dominant Financial trace as seengargil2(a).
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Figure 13: Expensive full merge in FAST FTL. About 20% of fulerges involve 20 data blocks or more for the
Financial trace.

Full merges. As shown in Figure 13, with FAST, about 20% of the full mergeshe Financial trace involve
20 data blocks or more. This is because state-of-the-arichiAT Ls allow high associativity of log blocks with
data blocks while maintaining block-based mappings foa th&icks, thus requiring a costly operation of merging
data pages in the victim log block with their correspondiagacblocks (recall Figure 7 in Section 2). For TPC-
H, although DFTL shows a higher number of total merges, its-firained addressing enables itréplace full
merges with less expensive partial mergésth FAST as many as 60% of the full merges involve more than 20
data blocks. As we will observe later, this directly impaesST'’s overall performance.

Figure 12(b) shows the higher number of block erases withTFAScompared with DFTL for all our work-
loads. This can be directly attributed to the large numbedad& blocks that need to be erased to complete the
full merge operation in hybrid FTLs. Moreover, in hybrid F¥bnly a small fraction of blocks (log blocks) are
available as update blocks, whereas DFTL allows all blooklset used for servicing update requests. This not
only improves the block utilization in our scheme as compargh FAST but also contributes in reducing the

invocation of the garbage collector.

Trangdlation and valid page copying overheads. DFTL introduces some extra overheads due to its address
translation mechanism (due to missed mappings that neezllicoight into the SRAM from flash). Figure 12(c)

shows the normalized overhead (with respect to FAST FTUnhftbese extra read and write operations along

24



-
*
'
1
1
o
v
[l
-

154
©
o
*\
'«
o
o ©
© o

Cumulative Probability
o
=]
Cumulative Probability
o 8
(=] o
»

o
%
a

©
Y
a

— Baseline — Baseline ||
-o-- DFTL -o- DFTL
-e- FAST -e- FAST

4 8 16 32 64 96 128 128+ 2 4 8 16 32 64 96 128 128+
Response Time (ms) Response Time (ms)

(a) Financial Trace (OLTP) (b) Cello99

e TR R -7

o
3

0.8
2

[N
\
»

= o o

154
©
©
-3
v
[
i
"
154
©
o

o
©

154
©
=

o
©
=

Cumulative Probability
Cumulative Probability
o 2
(=] a

54
©
N

°
9
a

—— Baseline —— Baseline |

[ -e- DFTL ! -o-- DFTL

H -*- FAST -9- FAST

4 8 16 32 64 96 128 128+ 2 4 8 16 32 64 96 128 128+
Response Time (ms) Response Time (ms)

(c) TPC-H (d) Web-Search

o
3

0.9
2

Figure 14: Each graph shows the Cumulative Distributiondiion (CDF) of the average system response time
for different FTL schemes.

with the extra valid pages required to be copied during ggelmollection. Even though the address translation
accounts for approximately 90% of the extra overhead in DféFlmost workloads, overall it still performs less
extra operations than FAST. For example, DFTL yields a @-f@lduction in extra read/write operations over
FAST for the Financial trace. Our evaluation supports theiksight behind DFTL, namely that the temporal
locality present in workloads helps keep this address latios overhead small, i.e., most requests are serviced
from the mappings in SRAM. DFTL is able to utilize page-let@nporal locality in workloads to reduce the
valid page copying overhead since most hot blocks (datakbland translation blocks) contain invalid pages
and are selected as victims by our garbage collector. Inxparanents, we observe about 63% hits for address
translations in SRAM for the financial trace even with our senvatively chosen SRAM size. In a later sub-

section, we investigate how this overhead reduces furiben increasing the SRAM size.
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System Response Time Device Response Time| 1/O driver Queuing Delay

Workloads | FTL Type Average (ms)| std.dev| Average (ms)| std.dev| Average (ms)| std.dev
Baseline 0.43 0.81 0.39 0.79 0.04 0.19
Financial FAST 2.75 19.77 1.67 13.51 1.09 13.55
DFTL 0.61 1.52 0.55 1.50 0.06 0.29
Baseline 1.50 4.96 0.41 0.80 1.08 4.88
Cello99 FAST 16.93 52.14 2.00 14.59 14.94 50.20
DFTL 2.14 6.96 0.59 1.04 1.54 6.88
Baseline 0.79 2.96 0.68 1.78 0.11 2.13
TPC-H FAST 3.19 29.56 1.06 11.65 2.13 26.74
DFTL 1.39 7.65 0.95 2.88 0.44 6.57
Baseline 0.86 0.64 0.68 0.44 0.18 0.46
Web Searchh FAST 0.86 0.64 0.68 0.44 0.18 0.46
DFTL 1.24 1.06 0.94 0.68 0.30 0.78

Table 4: Performance metrics for different FTL schemes wetiterprise-scale workloads.

5.3 Performance Analysis

Having seen the comparison of the overheads of garbagetotieand address translation for different FTLs, we
are now in a position to appreciate their impact on the parémrce offered by the flash device. The Cumulative
Distribution Function of the average system response tondifferent workloads is shown in Figure 14. DFTL
is able to closely match the performance of Baseline scheminé Financial and Cello99 traces. In case of the
Financial trace, DFTL reduces the total number of blockesas well as the extra page read/write operations by
about 3 times. This results in improved device service tiam@s shorter queuing delays (refer to Table 4) which
in turn improve the overall I/O system response time by ald8& as compared to FAST.

For Cello99, the improvement is much more dramatic becatifgchigh I/O intensity which increases the
pending requests in the I/O driver queue, resulting in hidagncies. Reviewers should be careful about the
following while interpreting these results: we would likeegoint out that Cello99 represents only a point within
a much larger enterprise-scale workload spectrum for wttiehgains offered by DFTL are significantly large.
More generally, DFTL is found to improve the average respdimes of workloads with random writes with the
degree of improvement varying with the workload’s propesti

For read-oriented workloads, DFTL incurs a larger addél@udress translation overhead and its performance
deviates from the Baseline (Figure 14(c) & (d)). Since FASHble to avoid any merge operations in the Web
search trace, it provides performance comparable to Besdtiowever, for TPC-H, it exhibitslang tail primarily

because of the expensive full merges and the consequentabggities seen by requests in the I/O driver queue.
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Hence, even though FAST services about 95% of the requetés, fi suffers from long latencies in the remaining

requests, resulting in a higher average system responsettan DFTL.
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Figure 15: Performance comparison of various FTLs with givan1/O intensity for synthetic workloads. DFTL
is able provide improved performance as well as sustainasged behavior in workloads much better than FAST.
The 99% confidence intervals are very small and hence notrshow

5.4 Exploring a Wider Range of Workload Characteristics

We have seen the improvement in performance for differealistee workloads with DFTL as compared to state-
of-the-art FTLs. Here, we widen the spectrum of our invegian by varying one workload property, namely 1/O
request arrival intensity. An enterprise-scale FTL schehwild be robust enough to sustain periods of increased
I/O intensity, especially for write dominant workloads. dnder to simulate such changing environments we
use two synthetic workloads with varying characteristiforkload A is predominantly random write-dominant
whereas Workload B has a large number of sequential writéth id¢reasing request arrival rate, the flash device
transitions from anormal operational regiorio anoverloaded region

As shown in Figure 15, for Workload A the transition into deaded region is marked by very high gradient
in response times pointing to the un-sustainability of sartkenvironment using FAST. On the other hand, DFTL is
not only able to provide improved performance in the opereti region but is also able to sustain higher intensity
of request arrivals. It providegraceful degradationn performance to sustained increase in I/O intensity, a
behavior especially desirable in enterprise-scale systeRor sequential workload B, the merge overhead is
reduced because of higher number of switch merges as cothfmafell-merges. Thus, FAST is able to endure
the increase in request arrival rate, much better than itsevformance with random-write dominant workload

A. However, we still observe better performance from DFTljah is able to approximate the performance of
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Figure 16: Microscopic analysis of DFTL and FAST FTL schemath Financial trace. The selected region

(requests 4920 to 5020) represents transition from normedadional region to overloaded region. Requests A
& C undergo full-merges in FAST. However, their impact isctateen on requests B & D through long queuing
latencies. Meanwhile, DFTL is able to provide much bettefggenance in the same region.

Baseline scheme because of the availability of all blockseteice the update requests.

5.5 Microscopic Analysis

In this sub-section, we try to perform a microscopic analyithe impact of garbage collection on instantaneous
response times by installing probes within FlashSim toetiadividual requests.

Figure 16 represents a same set of 100 consecutive requistsderviced by FAST and DFTL for the Fi-
nancial trace. This region illustrates transition from ataimable I/O intensity (operational region) to a period
of very intense 1/0Os (overloaded region) in the Financiaté. As is clearly visible, FAST suffers from higher
garbage collection overhead and requests undergo higteeicias as compared to DFTL. Full merges cause a
large number valid pages to be copied and the correspondiiaggshto be erased. This results in higher device
service time for the request undergoing these operatidms.ifi turn causes the pending requests in the 1/O driver

gueue to incur longer latencies. Thus, even though the éeérvice time for these requests is small; the overall
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system response time increases. For example, in the tofghitgd region in Figure 16, request A undergoes full

merge resulting in very high device service time. While A &y serviced, the pending request B incurs high
latency in the 1/O driver queue (spike in queueing time fomBiich increases its overall system response time.
The same phenomenon is visible for requests C and D. Thlispéuges not only impact the current requests but
also increase the overall service times for subsequenestg|by increasing queuing delays. In sharp contrast,
during the same period, DFTL is able to keep garbage cadleciverhead low and provide sustained improved

performance to the requests as it does not incur any sucly ddstmerge operations.

5.6 Impact of SRAM size
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Figure 17: Impact of SRAM size on DFTL. Response times haem lmormalized with respect to the Baseline
FTL scheme. For both the Financial trace and TPC-H, thererfopnance improvement with increased SRAM
hit-ratio. However, beyond the working-set size of worklsdhere is no benefit of additional SRAM for address
translation. The 99% confidence intervals are very smallreemte not shown.

All the experiments in the preceding subsections were dgngilizing the bare minimum amount of SRAM
necessary for implementing any state-of-the-art hybritl Bdheme. Even with this constrained SRAM size, we
have shown that DFTL outperforms the existing FTL schemesnfost workloads. The presence of temporal
locality in real workloads reduces the address-transiatieerhead considerably. Figure 17 shows the impact of
increased available SRAM size on DFTL. As seen, greater SRx®improves the hit ratio, reducing the address
translation overhead in DFTL, and thus improving flash deyierformance. As expected, with the SRAM size
approaching the working set size (SRAM hit ratio reacheA)MFTL's performance becomes comparable to
Baseline. Increasing SRAM size for holding address traiasis beyond the workload working-set size does not
provide any tangible performance benefits. It would be memekcial to utilize this extra SRAM for caching

popular read requests, buffering writes, etc. than foirgjannused address translations.
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6 Concluding Remarksand Future Directions

We argued that existing FTL schemes, all based on storingcafmiage-level and block-level mappings, exhibit
poor performance for enterprise-scale workloads withiggant random write patterns. We proposed a complete
paradigm shift in the design of the FTL with our Demand-baskedh Translation Layer (DFTL) that selectively
caches page-level address mappings. Our experimentalagiosl using a comprehensive flash simulator called
FlashSim with realistic enterprise-scale workloads esgldDFTL's efficacy for enterprise systems by demon-
strating that DFTL offered (i) improved performance, (€duced garbage collection overhead, (iii) improved
overload behavior and (iv) most importantly unlike exigtimybrid FTLs is free from any tunable parameters. As
a representative example, a predominantly random writeksiEnt 1/0O trace from an OLTP application running
at a large financial institution showed a 78% improvemenwarage response time due to a 3-fold reduction in
garbage collection induced operations as compared toexaftdhe-art FTL scheme. For the well-known read-
dominant TPC-H benchmark, despite introducing additiaparations due to mapping misses in SRAM, DFTL
improved response time by 56%.

As part of further validation, we plan to evaluate the effica€ DFTL in consolidated enterprise-scale en-
vironments using mixes of disparate workloads. Anothezalion of ongoing research studies the feasibility of
hybrid storage systems employing flash at appropriate plagihin the enterprise storage hierarchy along with

hard disk drives.
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